Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Zhang and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.083$
Data-to-parameter ratio $=11.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[tetraaquacopper(II)]- $\mu-4,4^{\prime}-$ bipyridine- $\left.\kappa^{2} N: N^{\prime}\right]$ 4-sulfonatobenzoate]

The title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\right\}_{n}$, shows the cation to form a linear chain in which each Cu centre exists in a distorted octahedral geometry. Interactions between the cations and anions are mediated by hydrogen bonding, which gives rise to a three-dimensional architecture.

Comment

The structural chemistry of complexes with the $\left[\mathrm{Co}\left(4,4^{\prime}-\right.\right.$ bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}\left(4,4^{\prime}\right.$-bipy is $4,4^{\prime}$-bipyridine) cation have been extensively studied (He et al., 2005; Shen et al., 2004; Dong et al., 2000; Wang et al., 2002) but, by contrast, only one analogous $\left[\mathrm{Cu}\left(4,4^{\prime}-\text { bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ complex has been characterized to date (Wang et al., 1999). Recently, we have directed our attention to the structural systematics of 4-sulfobenzoate (sb) complexes and constructed a number of interesting topological architectures (Fan, Xiao, Zhang et al., 2004; Fan, Xiao, Zhang \& Zhu, 2004; Fan et al., 2005; Zhang et al., 2005a,b; Zhang \& Zhu, 2005). As part of our investigations of metal-sb complexes, the title cation-anion complex, $\left[\mathrm{Cu}\left(4,4^{\prime}-\right.\right.$ bipy) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} .\left[\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right]^{2-}$, (I), has been characterized and the results are presented here.

The title complex comprises a cation and an anion (Fig. 1 and Table 1). In the cation, the Cu atom adopts a distorted octahedral geometry defined by four O-donors, from four water molecules, and two N -donors, from two 4,4'-bipyridine ligands, so that the donor set is trans $-\mathrm{N}_{2} \mathrm{O}_{4}$. The coordination mode of the $4,4^{\prime}$-bipy ligand leads to a linear cationic chain (Fig. 2). The two rings of the $4,4^{\prime}$-bipyridine molecule have a dihedral angle of 11.3 (2) ${ }^{\circ}$.

The anion is doubly deprotonated and does not coordinate to the Cu atom. The anion interacts with the cation through hydrogen bonds, so that the coordinated water molecules interact with sb through both the sulfonate and carboxyl groups to generate a three-dimensional hydrogen-bonding architecture (Table 2).

Experimental

Crystals of (I) were obtained by the layer method using three layered solutions in a slender tube. The upper layer solution was $\mathrm{CH}_{3} \mathrm{OH}$

Received 23 May 2005
Accepted 31 May 2005
Online 10 June 2005
(5 ml) containing $0.025 M 4,4^{\prime}$-bipyridine. The bottom layer was an aqueous solution ($5 \mathrm{ml} ; \mathrm{pH}=6$, adjusted by 1 M NaOH) containing $0.025 M \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $0.025 M$ potassium hydrogen 4-sulfobenzoate. The middle layer was a $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml}, v / v, 3: 2)$ mixed solvent system. After standing for three weeks, blue blockshaped crystals of (I) were obtained and collected by suction filtration.

Crystal data

```
MCu(\mp@subsup{C}{10}{}\mp@subsup{H}{8}{\prime}\mp@subsup{N}{2}{})(\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mp@subsup{)}{4}{}](\mp@subsup{\textrm{C}}{7}{}\mp@subsup{\textrm{H}}{4}{}\mp@subsup{\textrm{O}}{5}{}\textrm{S})
Mr}=491.9
Triclinic, P\overline{1}
a=7.6210 (4) \AA.
b=10.4049 (6) \AA
c=13.1550 (8) \AA
\alpha=68.003(1) }\mp@subsup{}{}{\circ
\beta=85.642(1)}\mp@subsup{}{}{\circ
\gamma=78.651(1)}\mp@subsup{}{}{\circ
V=948.28(9) \AA `
```


Data collection

Bruker APEX area-detector	3479 independent reflections
diffractometer	3249 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.017$
Absorption correction: multi-scan	$\theta_{\max }=25.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-9 \rightarrow 9$
$T_{\min }=0.685, T_{\max }=0.879$	$k=-12 \rightarrow 12$
7042 measured reflections	$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
3479 reflections
295 parameters
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0464 P)^{2}\right. \\
&+0.4714 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9961(16)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.3733(17)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.4556(19)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0093(17)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$2.0072(17)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0131(17)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$91.35(7)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$88.58(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$178.38(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4$	$95.80(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$85.79(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$90.20(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$90.11(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$86.90(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$92.76(7)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$90.19(7)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$87.06(7)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$91.27(7)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$177.13(6)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$176.87(7)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$90.10(7)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(3)$	$1.75(3)$	$2.587(2)$	$177(3)$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 8^{\mathrm{ii}}$	$0.84(1)$	$1.87(1)$	$2.704(3)$	$168(3)$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{iii}}$	$0.84(1)$	$2.13(1)$	$2.941(3)$	$160(3)$
Symmetry codes:	(i) $-x+2,-y+2,-z+1 ;$	(ii)	$x, y, z+1 ;$	(iii)
$-x+1,-y+1,-z+1$.				

Figure 1
A view of a segment of the cationic chain in (I) and the independent sb dianion. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 2-y, 2-z$.

Figure 2
A view of the linear chain motif formed by the cation in (I).

Aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and with a fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, Y. B., Smith, M. D., Layland, R. C. \& Loye, H. C. (2000). J. Chem. Soc. Dalton Trans. pp. 775-780.
Fan, S. R., Xiao, H. P., Zhang, L. P., Cai, G. Q. \& Zhu, L. G. (2004). Acta Cryst. E60, m1970-m1972.
Fan, S. R., Xiao, H. P., Zhang, L. P. \& Zhu, L. G. (2004). Acta Cryst. E60, m1833-m1835.
Fan, S. R., Zhang, L. P., Xiao, H. P., Cai, G. Q. \& Zhu, L. G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 69-70.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
He, H. Y., Zhou, Y. L., Hong, Y. \& Zhu, L. G. (2005). J. Mol. Struct. 737, 97101.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, L., Wang, H. T. \& Zhang, Y. J. (2004). Chin. J. Inorg. Chem. 20, 857-859.
Wang, Q. M., Wu, X. T., Zhang, W. J., Sheng, T. L., Lin, P. \& Li, J. M. (1999). Inorg. Chem. 38, 2223-2226.
Wang, Y. H., Feng, L. Y., Li, Y. G., Hu, C. W., Wang, E. B., Hu, N. H. \& Jia, H. Q. (2002). Inorg. Chem. 41, 6351-6357.

Zhang, L. P. \& Zhu, L. G. (2005). Acta Cryst. E61, m1036-m1038.
Zhang, L. P., Zhu, L. G. \& Xiao, H. P. (2005a). Acta Cryst. E61, m705-m707.
Zhang, L. P., Zhu, L. G. \& Xiao, H. P. (2005b). Acta Cryst. E61, m860-m862.

